

Special Topics (II) Final Report:

Post Processing of PSV Images with Gradient Illumination

 Name : Ivan Nagara Putra Wahyudi (林月王)

 Student ID No : B10735020

Major : IATP Mechanical Engineering Field

Advisor : Wei-Hsin Tien

2

Abstract

The Particle Streak Velocimetry (PSV) method is one method to describe and calculate

the particle’s instantaneous velocity properties in a velocity field. PSV uses the camera’s

streaking image and calculates the trailing streak of the moving particle’s length corresponding

to its exposure time to calculate its instantaneous velocity properties. PSV can be done without

the requirements of expensive hardware; usually, other methods require an expensive camera

as. PSV opens an opportunity window to those who may need to do velocimetry experiments

but do not have any sufficient/adequate requirements of camera specifications.

The algorithm which will be explained in this paper is conducted by using a MATLAB

language-based program. The algorithm has been well-developed by Mumtaz Hussain Qureshi

and Wei-Hsin Tien. The algorithm calculates the polynomial equations for the streak's

movement path, its instantaneous velocity at given points, particle diameter, and the particle

squared norm of the residual value (Resnorm) which indicates the error of the corresponding

results. The algorithm uses the least-square curve fitting method, which calculates the best fit

that will be as close as possible to the real path's trajectory. The least-square curve fitting

method will result in a 7th-order polynomial function of time.

With the reliable results of the least-square curve fitting algorithm, the final thing to

figure out if the result is right, besides judging from how small the resnorm value is to make

sure that the velocity direction is right. With the earlier algorithm which does not involve the

correctness of the velocity direction (positive-wards or negative-wards), an additional research

method of sample collection and additional algorithm features are needed. This paper will

discuss the additional sample collection method, also the new algorithm that is designed to

process the newly collected samples accordingly.

3

Introduction

The Particle Streak Velocimetry technique has been used as a method to solve the

velocity properties of particles in a particular velocity field. This method requires a streak

image, which is obtained by using a camera with a fixed exposure time to capture the moving

particle, to introduce the streak of the particle's movement path. In this specific experiment, the

MATLAB programming language is used as a tool to input the calculation and algorithm's

logic. This program is mostly written and designed by Mumtaz Hussain Qureshi.

The first set of algorithms and programs was designed to see if the curve-fitting

technique/logic is running well because the curve-fitting algorithm is the algorithm being

utilized to calculate and track the particle's instantaneous velocity and the streak's path itself.

The curve-fitting technique detects the curvature equation shown by the streak's curve. By

using the combination of the least square curve fitting technique with the Gaussian intensity

distribution, we may then acquire the instantaneous velocities (start, middle, and endpoint),

particle diameter, and the squared norm of the residual, etc., values of the streaking particle.

By the end of the first algorithm development, the results are quite promising since the

velocity vectors shown on top of the original image are well aligned and seemed to make sense

in the direction of their movement (An additional and more scientific check may be done by

checking for the streak’s squared norm of the residual (Resnorm) value). Even though the

velocity vector direction makes any sense, the true directions are unjustified. From the image,

the streaks are just a long streaking image without any clues of where the particle's starting

point, nor the middle and end point. So, a new idea was developed to identify the starting,

middle, and endpoints.

The additional technique to identify these three important points to justify or make sure

the velocity vector directions are right is to implement the light intensity variation during the

image-taking process. The light intensity is a function of time, so the streak’s intensity may

indicate which stage the streak is at. Finally, some additional hardware requirements are added

to achieve the hypothesized light intensity variation experiment objective.

4

Motivation

This research is conducted to continue the progress of earlier research, which is also

based on the MATLAB Particle Streak Velocimetry algorithm which has been built and

designed by Mumtaz Hussain Qureshi. Earlier research has shown positive and good

indications of results output; thus, this research is meant to fix and cover the parts where the

earlier research did not manage to cover, also to add some additional features so that the results

may be justified as a correct answer.

5

Description of Research Work

Chapter I: Development of the Non-Gradient Illuminated

“streakprocessV2r1.m” MATLAB Algorithm

The earlier MATLAB algorithm for solving the Particle Streak Velocimetry problems,

which was designed by Mumtaz Hussain Qureshi has proven to show good and near-correct

results despite the correctness of their true path direction. The directions can be seen as if the

vectors are well-aligned with the true streak particle’s image, with a good velocity tangent line

prediction. This shows that the algorithm itself is a success in its calculations, least-square

curve fitting techniques, and implementation of the Gaussian intensity distribution formula as

well.

In this research work, the main goal is to develop the technique where the researcher

may obtain information on the streak’s beginning, middle, and ending points. This is crucial

for figuring out the velocity’s direction, so that the researcher may find the flow field well. An

additional technique that has been proposed is to use the light intensity variation with respect

to time. With this hypothesis in hand, the streak’s original direction may be defined by how

bright or how dim the light intensity is at the streak’s corresponding path location.

One new feature that is introduced in the new “streakprocessV2r1.m” program is that

now, the results are shown in one structure called “Results”. Inside the structure, there are

smaller variables that have different data (I.e., Results.I3_stats1, Results.Resnorm_List, etc.).

Secondly, now there is a new algorithm to call the “streakprocessV2r1.m” function, which is

called “BatchRun_streakprocessV2r1.m”. When running the Batch Run program, the

streakprocessV2r1.m program must be opened in another tab, because the Batch Run program

invokes the streakprocessV2r1 function. The Batch Run function is used to input multiple

images at once so the loaded images are automatically queued to be processed by the

“streakprocessV2r1” algorithm. The process of running the “BatchRun_streakprocessV2r1.m”

will be by the figures shown below.

6

Figure 1.A. Starting the “BatchRun_streakprocessV2r1.m” algorithm.

Figure 1.B. Selecting the photos for processing.

7

Figure 1.C. The data results of the algorithm.

As we can see from the three figures above, firstly we can run the algorithm by clicking

the run button while opening the algorithm’s code tab, followed by the selection of the images

that are going to be processed by the algorithm. Finally, after the algorithm finished processing

the images, the results file with the format of “.mat” will be saved directly to the original

image’s directory with the same name as the image, with the addition of “_data.mat” in its

name.

Third, there is a program called “PlotResults.m” which is used to plot the velocity

vectors above the original image file, from the obtained data results of the

“streakprocessv2r1.m” algorithm. The “PlotResults.m” algorithm is now available to plot the

first, middle, and endpoints well following the streak’s spine. The earlier “PlotResults.m”

program only used the bounding box top left corner as a reference and it can only plot the

starting point’s velocity vector in that top left corner. Plotting the middle and endpoint locations

is not recommended because they might not be found precisely above the streak’s spine.

Finally, a program called “ResnormStatistics.m” was designed to calculate the resnorm

population distribution based on their total area in pixel units, because the resnorm values are

relative. There is no exact answer to which norm value shows the right calculation of the least

square curve-fitting technique. The point is that the lower the resnorm value, the smaller the

error is. With the help of this algorithm, it is possible to see the mean, maximum, minimum,

and average of the resnorm values. The population group has been divided into six groups,

which are Group 1 (100 pixels and above), Group 2 (80-99 Pixels), Group 3 (60-79 Pixels),

8

Group 4 (40-59 pixels), Group 5 (20-39 Pixels), Group 6 (12-19 Pixels). The reason Group 6

only has a minimum area of 12 pixels will be discussed below.

The area threshold chosen minimum area is 12 pixels. The area threshold can be

adjusted manually in the “StreakProcessV2r1.m” program in line 66 “thr_area = 12;”. But in

this case, the minimum area of 12 pixels was chosen to minimize the risks of noise images and

to speed the algorithm up so it can finish processing the whole image faster. The lower the area

threshold, the bigger the chance of the noise particle exposure to the whole data.

After some manual reviewing of the streak particles, it was shown that the 8 pixels’

group particles consisted of a lot of background noise particles. It was also shown that starting

from the streaks with 10 pixels’ area, there are a lot of background noises included in the data

calculation even though the resnorm value is exceedingly small. So, it is concluded that to

optimize the algorithm’s speed in finishing the whole iterations and remove the additional risk

of including the exposure of additional noise particles, the best area threshold for this

experiment is 12 pixels.

Besides the exceedingly small particle which is excluded to reduce the risk of the noise

particle addition, there are cases where even particles with a pixel area of above 100 are also

noise particles. The difference is that it is better to exclude the smaller particles because usually,

they have a bigger population than the large area particles. The error that will be eliminated is

much greater when we remove the smaller particles, and it is not effective to remove larger

particles because of the chance of them being the noise particles and their population may just

be too small.

9

Figure 2.A. Class 1 noise particle.

Figure 2.B. Class 1 streak particle.

In the 2 figures above, we can see that both (Figure 2.A. and Figure 2.B.) are

classified as Class 1 streaks, which means that they have a pixel area above 100 pixels. But

then we can see the difference between them both. Figure 2.A. had an abstract sense and is

more like noise if compared to Figure 2.B. which has more of a streaking particle image,

with its spine being more well defined. Regarding their resnorm values, Figure 2.A. has a

much smaller resnorm value than Figure 2.B., and their resnorm values respectively are 2.5

and 11.4. But with manual inspection, it cannot be justified if Figure 2.A. is more correct

than Figure 2.B. because it is not a streak particle.

10

In this research, more detailed observations have been made of the resnorm values. It

is shown that streak particles which have a bigger pixel area are more prone to bigger resnorm

values (which meant bigger error values). In this part, more numerical details will be shown

about the resnorm values which have been grouped to separate groups based on their area range

classifications.

Figure 3.A. “ResnormStatistics.m” results in the MATLAB workspace tab.

Figure 3.A. shows an example of the “ResnormStatistics.m” program’s results. It is

shown that it holds the statistical information of average, maximum, minimum, and mean

values of the streaks’ resnorm values based on each group, or even all together. This specific

program is used after obtaining the required data from running the “streakprocessv2r1.m”

program. The data are then calculated with the formulas that are inside the

“ResnormStatistics.m” program.

As explained in the paragraph above, there are 6 categorized population groups based

on their pixel area. Taking the “Local.LocalAvg.avgA1” as an example, it means that the

population group of Group 1 (100 pixels and above), has an average resnorm value of

11

12.5340. The second example is taking the “Local.LocalMax.max4” variable, which means

that 2.2297 is the maximum resnorm value of Group 4 (40-59 pixels group). The Global

structure has a content of the global average, median, maximum, and minimum resnorm values

with all the streak’s resnorm values listed on one variable (“Global.allArray”).

In addition, the 4 figures below (Figures 3.B. to 3.E.) will show different results based

on the processed images. The target for showing the other figures is to show the diversity of

the processing results.

Figure 3.B. “ResnormStatistics.m” second results.

12

Figure 3.C. “ResnormStatistics.m” third results.

Figure 3.D. “ResnormStatistics.m” fourth results.

13

Figure 3.E. “ResnormStatistics.m” fifth results.

14

Chapter II: Hardware Setups for Gradient Illumination

Technique

Some additional hardware is needed to make this step achievable. The first is to add an

Arduino Uno board, so that the board may be programmed to output signals to the LED, and

to the camera. The problem is that the Arduino board cannot connect directly to the LED lights,

so a PicoBuck LED Driver is used to become a mediator between the two parts. Then with this,

the Arduino will send a signal that will trigger the camera’s exposure start and the LED

brightness intensity as well.

Figure 4.A. Arduino connection to PicoBuck driver and LED schematics (Source:

https://learn.sparkfun.com/tutorials/picobuck-hookup-guide-v12/all).

With the current setup, the Arduino was designed to be in the master mode, and the

camera in the slave mode (Arduino initiates the trigger signal, and the camera must wait until

it receives the signal so that it can start its exposure time). The Arduino will have 2 cables that

are connected to the camera’s input and ground slot. The Arduino’s slot number (~9) will be

where the output cable from the Arduino into the input slot of the camera be inserted. Then,

any ground slot of the Arduino must also be connected to the camera’s ground slot. The setup

also includes some delays that are caused by the internal systems and basic physics law. For

example, the camera needs some delay time after receiving the trigger signal from the Arduino,

to start capturing and start the exposure. The camera also has a data readout delay time and

may be adjusted accordingly as well.

15

Figure 4.B. The hardware setup schematic diagram.

The camera type used in this research was the Ximea MQ013CG-ON. The readout

delay time of this camera, however, is still unknown because the camera that was used does

not have the manual to calculate the readout time. So, this research used 7000 microseconds as

the readout delay time. The results turn out to be good and are still as expected because the

observable particle streaks still have the dim to the bright intensity gradient. For the image

capturing method of the gradient illuminated particles, the magnification used was around 20x

and the exposure time used was around 24.99 milliseconds. In these 24.99 milliseconds, the

light intensity value goes up from 1 up to 255.

The Arduino code is designed to send the trigger signal with the shape of a rising edge.

The rising edge high time lasts for 10 microseconds and then is continued directly by the

exposure of the image for 24990 microseconds. While this exposure time is running, the LED

intensity starts to grow from 1 to 255. The number of 1 to 255 is obtained from the Arduino

analog values for the minimum and maximum values, where the analog value of 0 means 0

volts, the analog value of 255 means 5 volts, and the analog values between 0-255 are linearly

correlated from 0 to 5 volts. The complete Arduino code will be included in the attachment

section.

16

A specific LED angle needs to be determined by the researcher, such that the light will

shine on the particles but leaves the background dark enough to leave a good amount of contrast

between the particle and the background. The focus length of the LED needs to be determined

as well so that the focus lands right on the particle’s layer. With this, it is recommended that

the light is not directly above the particle and shines directly to the camera underneath. The

schematic of this problem will be shown in Figure 4.C. below.

Figure 4.C. LED, camera, and particle setup diagram.

The particles that are used as experimental objects are placed inside a microchannel

mold. Before injecting the particles into the mold, the mold must be cleaned with alcohol and

vibrated in the vibrator box so that it may be clean for use. After the channel inside the

microchannel is cleaned, the surface glass of the microchannel must also be cleaned with

alcohol and dried by pressured air sprayer. After all of these steps are done, the microchannel

can be inserted by the particles.

The method that is used to move the particles was to put an injection in one end of the

microchannel, then inject the microchannel with more particles so that the camera will capture

the moving particles due to injection pressure from the upcoming particles. However, the

17

downside of the injection method is that the researcher must press the injector in a very gentle

way because even a very small push force will accelerate the particles fast enough such that

the camera could not catch the particles’ streak image.

Besides using the injection to move the particles, the use of piezoelectric vibrations to

move the particles is a better way to obtain clearer experimental images. The piezoelectric

method is a better way to deliver an adequate amount of vibration forces, such that the particles

can move around the microchannel at a good pace. Firstly, the piezoelectric is connected to the

signal generator. The frequency and the voltage of the signal generator can be adjusted

accordingly depending on the researcher’s goal (12 kHz and 20 Volts in this experiment). Then,

the piezoelectric can be placed on top of the microchannel and stick to the top of the

microchannel surface with the help of lubricant gel, nearby its small triangular mold shapes so

that the vibrations will be near enough to the particles inside the microchannel.

One of the problems encountered during the setting up of the hardware is that the

camera manual doesn’t have the data readout delay formula for this particular camera. So, the

researchers used a guessed data readout delay number of 7000 microseconds, which had been

explained in the paragraph above. With this problem in hand, the readout time may interrupt

the perfect synchronization of the camera and the blinking of the LED light, so that the initial

light value during the start of the exposure time is not the value set for the start of the exposure

time (i.e., At the start of the exposure time, the intensity must be “1” but for some reason of

non-perfect synchronization, the intensity value during the exposure start is not 1).

18

Chapter III: Gradient-Illuminated Experimental Images

With the new hardware setups, some newer experimental images with the gradient

illumination technique had been captured. Some of the captured experimental images will be

shown in Figure 5.A. until 5.C. below.

Figure 5.A. First gradient illumination experimental image.

19

Figure 5.B. Second gradient illumination experimental image.

20

Figure 5.C. Third gradient illumination experimental image.

From the three experimental images shown above, we can see that the background has

no direct light source that will outshine the streak particles. The light angle shines just an

adequate amount of lighting, and the streak particles have a bright view because they are

reflecting the light. However, we can see that there are a lot of noise particles. This is due to

the streak particles that are in the micro-channel, which are also in different layer depths. The

lenses can only focus on one layer at a time so that the particles in different layer depths are

unfocussed, causing the circular noise to blur across the image.

21

Figure 5.D. Zoomed-in picture of figure 2.B.’s circular noises.

The newest results that were obtained from the new setup seem to be working as

planned. The sample images show that there are light intensity gradients along with the

streaking particles. The technique that was used to do this intensity variation experiment is that

the light intensity will keep on increasing until its maximum intensity for the exposure’s time

duration. At the start of the exposure, its intensity is at its minimum, and it gradually increases

and reaches the peak intensity at the end of the exposure time.

We can see from above that the trailing streak leaves a darker trail than the one ahead

of it, which has brighter intensity. This method of experimental image acquisition cannot be

achieved by the old image capturing method, and this method is available because the LED

light’s intensity can be scaled and adjusted accordingly with the help of the PicoBuck LED

Driver and Arduino Uno board. Figure 5.E. shown below will show the difference between

the old captured experimental streak images and the new ones.

22

 (a) (b)

Figure 5.E. (a) & (b) Comparison of the (a)old and (b)new experimental images.

The older particle streak image shows that it doesn’t present a good gradient of intensity,

so it is definitely hard to see which one is the starting, middle, and end points of those streaks.

Unlike it, the newly captured experimental streak images are showing us with bare eyes the

starting and ending points of those particle streaks. The darker end of the streak indicates the

starting point, and the bright peak on the opposite end means the ending/final point of the streak.

The image processing part with the MATLAB algorithm, this part has not been

achieved yet due to time limitations. The program has been pre-made, and the program was

not runnable because it still needs some editing and adjustments. The program can only run a

grayscale image, so Figure 5.E.(b) image cannot be processed by the program yet. With the

help of MATLAB’s command of “i.e., image = rgb2gray(“image_file”);”, the blue-colored

image will be converted into a gray-scaled image.

Figure 5.F. Conversion of RGB image into grey-scaled image code.

23

Chapter IV: Future Works

 The current research has almost achieved all of the hardware setup requirements,

except for the data readout time delay value. In the future, the readout delay time must be

defined correctly such that the camera and LED’s blink sync well. Also, it is suggested that

before picking the camera for the experiment, researchers must research the camera’s

specifications completely so that the research may be done perfectly. The perfect

synchronization between the camera and the LED light blinking time is crucial for the image-

taking process. The accuracy of the delay time is up to the microseconds level so a slight error

can cause huge and incrementing error values.

 In the future, the program that is developed for this newly developed gradient

illuminated experimental image should be edited accordingly, optimized to have a shorter

runtime, and be tested to know whether the program works as expected, or not. The program

has not been edited nor tested due to time limitation reasons, so the results of running the

program have not been studied yet.

Conclusion

With the newly developed image capturing method that implements the use of light

intensity variation, researchers now may correctly define the starting, middle, and end-points

of the streaking particles; unlike the previous experimental image capturing method. Particle

Streak Velocimetry may be an opportunity door for those who do not have any good hardware

equipment but needs to do the particle velocimetry experiments. The captured image has shown

us some great prospects that it may contribute to future research, and with the right algorithm

development to resolve the image, it can be a reliable source and method of velocimetry

technique as well.

References

I) Mumtaz Hussain QURESHI and Wei-Hsin TIEN - A Novel Streak -Resolving

Algorithm for Particle Streak Velocimetry

II) Mumtaz Hussain QURESHI , Wei-Hsin TIEN and Yi-Jiun Peter LIN -

Performances Comparison of Particle Tracking Velocimetry (PTV) and Particle

Image Velocimetry (PIV) with Long Exposure Particle Streaks

24

Attachments

1. streakprocessV2r1.m code

function Results=streakprocessV2r1(filename)
close all;
warning ('off');
original = imread(filename);
image_type = class(original);

se = strel('disk',5);
tophatFiltered = imtophat(original,se);

I2=tophatFiltered;
% Set threshold to further ignore any low intensity pixel
thr=50;

% Apply the thresholding
I3=I2.*I2>thr;

% Define blobs by checking the connection of pixels
I3_cc=bwconncomp(I3);

% Original image masked by the tophatfilter + thresholding
if image_type == "uint8"
 I3_gray=original.*uint8(I3);
elseif image_type == "uint16"
 I3_gray=original.*uint16(I3);
elseif image_type == "uint32"
 I3_gray=original.*uint32(I3);
else
 return
end
% Use "regionprops" to collect more blob properties
I3_stats1 = regionprops(I3_cc,'Centroid','PixelList',...
 'BoundingBox','Area','Image');
%%
for i=1:size(I3_stats1,1)
 BBox=I3_stats1(i).BoundingBox;
 grayI=I3_gray(ceil(BBox(2)):ceil(BBox(2))+BBox(4)-
1,ceil(BBox(1)):ceil(BBox(1))+BBox(3)-1);
 I3_stats1(i).Blob=grayI;
end
% Filter out particle image that has smaller area than thr_area
thr_area=12;

%%%%%%%%%%%%%%%%%%% CURVEFITTING PROCESS %%%%%%%%%%%%%%%%%%%%%%%

idx = [I3_stats1.Area]>=thr_area; %seeking logical values of 0 and 1
idx=reshape(idx,[],1);
a=(1:length(idx))';
b=a.*idx;
Blob_filtered_idx=b(all(b,2),:);

counter=1;
for n=1:length(Blob_filtered_idx)
 Blob_filtered_idxx = Blob_filtered_idx(n);

25

 Blob_filtered = I3_stats1(Blob_filtered_idxx).Blob;
 PixelListt = I3_stats1(Blob_filtered_idxx).BoundingBox;
 PixelListt = [PixelListt(1) PixelListt(2)];
Blob = Blob_filtered;
 [rr, cc] = size(Blob);
r=round(rr/2);
c=round(cc/2);
xdata_idx=find(I3_stats1(Blob_filtered_idxx).Image==1);
[xdata(:,1),xdata(:,2)]=find(I3_stats1(Blob_filtered_idxx).Image==1);
A=Blob(xdata_idx);
I3_stats1(Blob_filtered_idxx).I3_Region=[xdata,A];
A=double(A);
if image_type == "uint8"
 A=A./255;
elseif image_type == "uint16"
 A=A./65535;
elseif image_type == "uint32"
 A=A./4294967295;
else
 return
end

ydata=A; % BLOB consisted of 0 matrixes with size of 193 x 193 double.

x001=[0.5, r/2, 0.9, c/2, 1, 8e-10 , 2.7e-09, 3.4e-09,
9.5e-07, 1.5e-05, 0.007, 0.01, 0, 0.00001 , 0.00001,
0.00001, 0.00003, 0.00007, 0.07, 0.01, 0];

lb= [0.1, 0, 0.8, 0, 1, -7.2e-10, -2.6e-09, -3.3e-09,
-9.4e-07, -1.4e-05, -0.06, -0.09, 0 , 0.00001, 0.00001,
0.00001, -0.00002, -0.00006 , -0.06, -0.09, 0];
ub=[1.1, r, 1.2, c, 1, 7.2e-10, 2.6e-09, 3.3e-09,
9.4e-07, 1.4e-05, 0.06, 0.09, 193 , 0.00001, 0.00001,
0.00001, 0.00002, 0.00006, 0.06, 0.09, 193];

[x1,resnorm1]= lsqcurvefit(@D2GaussFunction2,x001,xdata,ydata,lb,ub);

Fittedanswers1 = x1;
Error1 = resnorm1;

x002=[0.5, r/2-2, 0.9, c/2-2, 1, 4e-09 , 1.2e-08, 3.3e-09, 2.1e-
06, 6e-05 , 0.0095, 5 , 0, 3e-10 , 8e-10, 5e-08, 10e-07,
0.0004, 0.0095, 5, 0];

lb= [0.1, 0, 0.8, 0, 1 , -3e-09, -1.1e-08, -3.2e-09, -2.05e-06,
-5.5e-05, -0.0095, -4, 0 , -2e-10, -7e-10, -4e-08, -9.99e-07, -
0.0003, -0.0095, -4, 0];
ub=[1.1, r, 1.2, c, 1, 3e-09, 1.1e-08, 3.2e-09, 2.05e-06,
5.5e-05, 0.0095, 4, 193 , 2e-10, 7e-10, -4e-08, -9.99e-07,
0.0003, 0.0095, 4, 193];

[x2,resnorm2]= lsqcurvefit(@D2GaussFunction2,x002,xdata,ydata,lb,ub);

Fittedanswers2 = x2;
Error2 = resnorm2;

26

x003=[0.5, r/2-4, 0.9, c/2-4 , 1, 10e-08, 6e-07, 6e-05, 0.006,
0.09, 0.7, 37, 0, 4e-08, 3e-07, 4e-06, 3e-04, 0.07,
0.7 , 21, 0];

lb= [0.1, 0, 0.8, 0 , 1 , -9e-08, -5e-07, -5e-05, -0.005, -
0.09, -0.6, -36, 0, -3e-08, -2e-07, -3e-05, -2e-04, -0.06, -
0.6 , -20, 0];
ub=[1.1, r, 1.2, c , 1, 9e-08, 5e-07, 5e-05, 0.005, 0.09,
0.6, 36, 193, 3e-08, 2e-07, 3e-05, 2e-04, 0.06, 0.6,
20, 193];

[x3,resnorm3]= lsqcurvefit(@D2GaussFunction2,x003,xdata,ydata,lb,ub);

Fittedanswers3 = x3;
Error3 = resnorm3;

x004=[0.5, r/2-6, 0.9, c/2-6, 1, 4e-08, 3e-07, 4e-06, 3e-
04, 0.07, 0.7 , 21, 0, 10e-08, 6e-07, 6e-05, 0.006,
0.09, 0.07, 37, 0];

lb= [0.1, 0, 0.8, 0, 1, -3e-08, -2e-07, -3e-05, -2e-04,
-0.06, -0.6 , -20, 0, -9e-08, -5e-07, -5e-05, -0.005, -0.09, -
0.06, -36, 0];
ub=[1.1, r, 1.2, c , 1, 3e-08, 2e-07, 3e-05, 2e-04,
0.06, 0.6, 20, 193, 9e-08, 5e-07, 5e-05, 0.005, 0.09,
0.06, 36, 193];

[x4,resnorm4]= lsqcurvefit(@D2GaussFunction2,x004,xdata,ydata,lb,ub);

Fittedanswers4 = x4;
Error4 = resnorm4;

x005=[0.5, r/2-6, 0.9, c/2-6 , 1, 10e-08, 6e-07, 6e-05, 0.006,
0.009 , 0.7 , 13, 0, 4e-08, 3e-07, 4e-05, 3e-04, 0.07, 0.7 ,
13, 0];

lb= [0.1, 0, 0.8, 0 , 1 , -9e-08, -5e-07, -5e-05, -0.005, -0.0099,
-0.6, -12, 0, -3e-08, -2e-07, -3e-05, -2e-04, -0.06, -0.6, -12, 0];
ub=[1.1, r , 1.2, c , 1, 9e-08, 5e-07, 5e-05, 0.005, 0.0099,
0.6, 12, 193, 3e-08, 2e-07, 3e-05, 2e-04, 0.06, 0.6, 12,
193];

[x5,resnorm5]= lsqcurvefit(@D2GaussFunction2,x005,xdata,ydata,lb,ub);

Fittedanswers5 = x5;
Error5= resnorm5;

x006=[0.5, r/2-6, 0.9, c/2-6 , 1, 10e-08, 6e-07, 6e-05, 7e-04,
0.05, 0.7, 37, 0, 4e-08, 3e-07, 4e-06, 3e-04,
0.08, 0.08 , 37, 0];

lb= [0.1, 0, 0.8, 0 , 1 , -9e-08, -5e-07, -5e-05, -6e-04, -
0.04, -0.6, -36, 0, -3e-08, -2e-07, -3e-05, -2e-04, -
0.07, -0.07 , -36, 0];
ub=[1.1, r, 1.2, c , 1, 9e-08, 5e-07, 5e-05, 6e-04, 0.04,
0.6, 36, 193, 3e-08, 2e-07, 3e-05, 2e-04, 0.07,
0.07, 36, 193];

27

[x6,resnorm6]= lsqcurvefit(@D2GaussFunction2,x006,xdata,ydata,lb,ub);

Fittedanswers6 = x6;
Error6 = resnorm6;

x007=[0.5, r/2-6, 0.9, c/2-6, 1, 4e-08, 3e-07, 4e-06, 3e-
04, 0.08, 0.08 , 37, 0, 10e-08, 6e-07, 6e-05, 7e-04,
0.05, 0.7, 37, 0];

lb= [0.1, 0, 0.8, 0, 1, -3e-08, -2e-07, -3e-05, -2e-04,
-0.07, -0.07, -36, 0, -9e-08, -5e-07, -5e-05, -6e-04, -0.04,
-0.6, -36, 0];
ub=[1.1, r, 1.2, c , 1, 3e-08, 2e-07, 3e-05, 2e-04,
0.07, 0.07, 36, 193, 9e-08, 5e-07, 5e-05, 6e-04, 0.04,
0.6, 36, 193];

[x7,resnorm7]= lsqcurvefit(@D2GaussFunction2,x007,xdata,ydata,lb,ub);

Fittedanswers7 = x7;
Error7 = resnorm7;

x008=[0.5, r/2-2, 0.9, c/2-2, 1, 4e-09 , 1.2e-08, 3.3e-09, 2.1e-
06, 6e-05 , 0.0095, 2 , 0, 3e-10 , 8e-10, 5e-08,
10e-07, 0.0004 , 0.0095 , 2 , 0]

lb= [0.1, 0, 0.8, 0, 1, -3e-09, -1.1e-08, -3.2e-09, -2.05e-06,
-5.5e-05, -0.0095, -1, 0 , -2e-10, -7e-10, -4e-08, -9.99e-07, -
0.0003 , -0.0095, -1, 0];
ub=[1.1, r, 1.2, c, 1, 3e-09, 1.1e-08, 3.2e-09, 2.05e-06,
5.5e-05, 0.0095, 1, 193 , 2e-10, 7e-10, -4e-08, -9.99e-07,
0.0003, 0.0095, 1, 193];

[x8,resnorm8]= lsqcurvefit(@D2GaussFunction2,x008,xdata,ydata,lb,ub);

Fittedanswers8 = x8;
Error8 = resnorm8;

resnorm = [resnorm1, resnorm2, resnorm3, resnorm4 ,resnorm5,resnorm6,
resnorm7 ,resnorm8]; x = [x1; x2; x3; x4; x5;x6; x7; x8]; [~, idx] =
min(resnorm);
Fittedanswers = x(idx,:);
Error = resnorm(idx);
Fitteddata(n,1:21) = Fittedanswers;
Fitteddata(n, 22) = Error;

px_fit(n,1:8)=Fittedanswers(:,14:21);
x_coef=px_fit(n,1:8);
x_initial_blob=Fittedanswers(:,4);
px_der_fit(n,:)=polyder(px_fit(n,1:8));

py_fit(n,1:8)=Fittedanswers(:,6:13);
y_coef=py_fit(n,1:8);
y_initial_blob=Fittedanswers(:,2);
py_der_fit(n,:)=polyder(py_fit(n,1:8));

% additional parts for streak locations

28

x_initial_shift=x_initial_blob+PixelListt(1);
y_initial_shift=y_initial_blob+PixelListt(2);
x_initial1(n) = polyval(x_coef,0)+x_initial_shift;
y_initial1(n) = polyval(y_coef,0)+y_initial_shift;

x_middle1(n) = polyval(x_coef,0.5)+x_initial_shift;
y_middle1(n) = polyval(y_coef,0.5)+y_initial_shift;

x_final1(n) = polyval(x_coef,1)+x_initial_shift;
y_final1(n) = polyval(y_coef,1)+y_initial_shift;

u_initial_pt_fit(n)=polyval(px_der_fit(n,:),0);
u_middle_pt_fit(n)=polyval(px_der_fit(n,:),0.5);
u_final_pt_fit(n)=polyval(px_der_fit(n,:),1);

v_initial_pt_fit(n)=polyval(py_der_fit(n,:),0);
v_middle_pt_fit(n)=polyval(py_der_fit(n,:),0.5);
v_final_pt_fit(n)=polyval(py_der_fit(n,:),1);

Dia_fit(n)=Fittedanswers(:,3)*2;
Amp_fit(n)=Fittedanswers(:,1);
Resnorm_List(n)=Fitteddata(n, 22);

%% Additional code for resnorm lists on the I3_stats1 table
I3_stats1(Blob_filtered_idxx).Resnorm=Resnorm_List(n);

% Data save to a structure
fprintf('Just finished iteration #%d\n', counter);
counter=counter+1;
xdata=[];
end

Results.I3_stats1=I3_stats1;
Results.Fitteddata=Fitteddata;
Results.px_fit=px_fit;
Results.px_der_fit=px_der_fit;
Results.py_fit=py_fit;
Results.px_der_fit=px_der_fit;
Results.py_der_fit=py_der_fit;
Results.x_initial1=x_initial1;
Results.y_initial1=y_initial1;
Results.x_middle1=x_middle1;
Results.y_middle1=y_middle1;
Results.x_final1=x_final1;
Results.y_final1=y_final1;
Results.u_initial_pt_fit=u_initial_pt_fit;
Results.v_initial_pt_fit=v_initial_pt_fit;
Results.u_middle_pt_fit=u_middle_pt_fit;
Results.v_middle_pt_fit=v_middle_pt_fit;
Results.u_final_pt_fit=u_final_pt_fit;
Results.v_final_pt_fit=v_final_pt_fit;
Results.Dia_fit=Dia_fit;
Results.Amp_fit=Amp_fit;
Results.Resnorm_List=Resnorm_List;

function F = D2GaussFunction2(x,xdata)

29

 F =integral(@(t) x(1)*exp(-(((xdata(:,1)-x(2)-
(x(6)*t^7+x(7)*t^6+x(8)*t^5+x(9)*t^4+x(10)*t^3+x(11)*t^2+x(12)*t^1+x(13))).^2/(2*x
(3)^2) + ...
 ((xdata(:,2)-x(4)-
(x(14)*t^7+x(15)*t^6+x(16)*t^5+x(17)*t^4+x(18)*t^3+x(19)*t^2+x(20)*t^1+x(21))).^2/
(2*x(3)^2))))),0,x(5),'ArrayValued',true);

30

2. BatchRun_streakprocessV2r1.m code

[filenameset, pathname]= uigetfile('*.tif','MultiSelect','on');
for i=1:size(filenameset,2)
 filename=[pathname filenameset{i}];
 Results=streakprocessV2r1(filename);
 save([filename '_data.mat'],'Results');
end

31

3. PlotResults.m code

%% RESULTS
[filename, pathname]= uigetfile('*.tif');
filename=[pathname filename];
load([filename '_data.mat']);
original=imread(filename,'tif');
u_initial_pt_fit_list=reshape(Results.u_initial_pt_fit,[],1);
u_middle_pt_fit_list=reshape(Results.u_middle_pt_fit,[],1);
u_final_pt_fit_list=reshape(Results.u_final_pt_fit,[],1);

v_initial_pt_fit_list=reshape(Results.v_initial_pt_fit,[],1);
v_middle_pt_fit_list=reshape(Results.v_middle_pt_fit,[],1);
v_final_pt_fit_list=reshape(Results.v_final_pt_fit,[],1);

x_initial=reshape(Results.x_initial1,[],1)-0.5;
y_initial=reshape(Results.y_initial1,[],1)-0.5;

x_middle=reshape(Results.x_middle1,[],1)-0.5;
y_middle=reshape(Results.y_middle1,[],1)-0.5;

x_final=reshape(Results.x_final1,[],1)-0.5;
y_final=reshape(Results.y_final1,[],1)-0.5;

Dia_fit=reshape(Results.Dia_fit,[],1);
Amp_fit=reshape(Results.Amp_fit,[],1);
Resnorm_List=reshape(Results.Resnorm_List,[],1);
plot_resnorm_idx=find(Resnorm_List>10);
scaler = double(0.5);

figure(1);
imshow(original)
hold on;

qstart=quiver(x_initial, y_initial,
u_initial_pt_fit_list*scaler,v_initial_pt_fit_list*scaler,0,'r');
xlim([0 1392]);
ylim([0 1040]);

qmid=quiver(x_middle,y_middle,u_middle_pt_fit_list*scaler,v_middle_pt_fit_list*sca
ler,0,'g');
xlim([0 1392]);
ylim([0 1040]);

qend=quiver(x_final,y_final,u_final_pt_fit_list*scaler,v_final_pt_fit_list*scaler,
0,'y');
xlim([0 1392]);
ylim([0 1040]);

xlabel('X(pixels)');
ylabel('Y(pixels)');
set (gca, 'ydir', 'reverse')

32

title('Experimental Curve-Fitted Velocity Field');
set(gca, 'FontName', 'Times')
ax = gca;
ax.FontSize = 12;

33

4. Arduino Code

const int CHL_1 = 3; //defining the pin numbers

 const int CHL_2 = 5;

const int CHL_3 = 6;

int trigger_1 = 9;

int trigger_2 = 10;

int value = 0;

double a = 0.0960745098039216; //exp time of 24.99 ms

void setup(){

 pinMode(CHL_1, OUTPUT);

pinMode(CHL_2, OUTPUT);

pinMode(CHL_3, OUTPUT);

pinMode(trigger_1, OUTPUT); //Send trigger signal from Arduino to others

pinMode(trigger_2, INPUT);

}

void loop(){

 analogWrite(CHL_1,0);

analogWrite(CHL_2,0);

analogWrite(CHL_3,0);

analogWrite(trigger_1,255);

delayMicroseconds(10);

analogWrite(trigger_1,0);

for(int i=1, i<=255;i++){

analogWrite(CHL_1,i);

analogWrite(CHL_2,i);

analogWrite(CHL_3,i);

delay(a);

}

delayMicroseconds(7000); //the assumed readout delay time

analogWrite(CHL_1,0);

34

analogWrite(CHL_2,0);

analogWrite(CHL_3,0);

analogWrite(trigger_1,255);

delayMicroseconds(10);

analogWrite(trigger_1,0);

for(int i=1, i<=255;i++){

analogWrite(CHL_1,i);

analogWrite(CHL_2,i);

analogWrite(CHL_3,i);

delay(a);

}

delayMicroseconds(7000);

}

